
CROSSTALK The Journal of Defense Software Engineering 13March 1998

Moving from “What” to “How”
Although the Capability Maturity
Model (CMM) provides a powerful
improvement framework, its focus is
necessarily on “what” organizations
should do and not “how” they should do
it. This is a direct result of the CMM’s
original motivation to support the De-
partment of Defense acquisition com-
munity. We knew management should
set goals for their software work but we
also knew that there were many ways to
accomplish these goals. Above all, we
knew no one was smart enough to define
how to manage all software organiza-
tions. We thus kept the CMM focus on
goals, with only generalized examples of
the practices the goals implied.

As organizations used the CMM,
many had trouble applying the CMM
principles. In small groups, for example,
it is not generally possible to have dedi-
cated process specialists, so every engi-
neer must participate at least part time
in process improvement. We kept de-
scribing to engineers what they ought to
do and they kept asking us how to do it.
Not only did this imply a need for much
greater process detail, it also required
that we deal more explicitly with the real
practices of development engineers. We
needed to show them precisely how to
apply the CMM process principles.

Because software development is a
rich and sophisticated process, we real-

Three Dimensions of Process Improvement
Part II: The Personal Process

Watts S. Humphrey
Software Engineering Institute

Part I of this article (CROSSTALK, February 1998) described the Capability Maturity Model®, why it was developed,
and how it can help organizations improve their performance. Part II addresses the Personal Software Process (PSP)SM,
which shows engineers how to perform their tasks in an effective and professional way. In the final analysis, to have
high-performance software organizations, you must have high-performance software engineers working on high-perfor-
mance software teams. The objective of the PSP is to show software engineers how to use process principles in their work.
Part III of this article (April 1998 issue of CROSSTALK) describes the Team Software Process, which shows integrated
product teams how to consistently produce quality products under aggressive schedules and for their planned costs.

The SEI’s work is supported by the Department
of Defense. Capability Maturity Model and
CMM are registered with the U.S. Patent and
Trademark Office. Personal Software Process, PSP,
Team Software Process, and TSP are service marks
of Carnegie Mellon University.

Figure 1. The PSP process evolution.

ized a single set of cookbook methods
would not be adequate. We thus chose
to deal with fundamental process prin-
ciples and to show engineers how to
define, measure, and improve their per-
sonal work. The key is to recognize that
all engineers are different and that each
must know how to tune their practices
to produce the most personal benefit.

Changing Engineers’ Practices
Improvement requires change, and
changing the behavior of software engi-
neers is a nontrivial problem. The rea-
sons for this explain why process im-
provement is difficult and illustrate the
logic for the PSP.

The problems related to improving
the personal practices of software engi-
neers have long interested me, so after I
had been at the Software Engineering
Institute (SEI) for several years, I looked
for someone else to lead the CMM work
so I could address this issue. I decided to
first demonstrate how process improve-
ment principles could be applied to the
work of individual engineers. Over the
next several years, I wrote 62 small to
moderate-sized programs as I developed
as close to a Level 5 personal process as I
could devise.

The results were amazing. I became
more productive, the quality of my work
improved sharply, and I could make
accurate personal plans. The next step
was to demonstrate the effectiveness of
these methods for others. I first tried
meeting with engineering groups to
describe what I had done and to get
them to try it. Despite management

support, this was a dismal failure. One
laboratory manager even told his people
that it was more important for them to
use these methods than to meet their
project schedules. The engineers all said
they would do so, but none of them did.
The question was why not?

A Question of Conviction
Software engineers develop their per-
sonal practices when they first learn to
write programs. Since they are given
little or no professional guidance on how
to do the work, most engineers start off
with exceedingly poor personal practices.
As they gain experience, some engineers
may change and improve their practices,
but many do not. In general, however,
the highly varied ways in which indi-
vidual software engineers work are rarely
based on a sound analysis of available
methods and practices.

Engineers are understandably skepti-
cal about changes to their work habits;
although they may be willing to make a
few minor changes, they will generally

Software Engineering Technology



14 CROSSTALK The Journal of Defense Software Engineering March 1998

stick fairly closely to what has worked
for them in the past until they are con-
vinced a new method will be more effec-
tive. This, however, is a chicken-and-egg
problem: engineers only believe new
methods work after they use them and
see the results, but they will not use the
methods until they believe they work.

The Personal Software Process
Given all this, how could we possibly
convince engineers that a new method
would work for them? The only way we
could think of to change this behavior
was with a major intervention. We had
to directly expose the engineers to the
new way of working. We thus decided to
remove them from their day-to-day
environment and put them through a
rigorous training course. As shown in
Figure 1, the engineers follow prescribed
methods, represented as levels PSP0
through PSP3, and write a defined set of
10 programming exercises and five re-
ports [1]. With each exercise, they are

gradually introduced to various ad-
vanced software engineering methods.
By measuring their own performance,
the engineers can see the effect of these
methods on their work.

Figures 2 through 5 show some of
the benefits engineers experience [2, 3].
Figure 2 shows the average reduction in
size-estimating error for nearly 300 engi-
neers who took the PSP course and
provided data to the SEI. Their size-
estimating error at the beginning of the
course is indicated at the left of the
chart, and their error at the end of the
course is shown at the right. This shows

Figure 2. Size estimation results.

Figure 3. Effort estimation results.

that size-estimating errors averaged 63
percent with PSP0 (the first three pro-
grams) and 40 percent for PSP2 and
PSP3 (Programs 7, 8, 9, and 10). Note
that the PSP introduces a disciplined
estimating method (Proxy-Based Esti-
mating) with PSP1 (Program 4) [1].

Similarly, for time estimating, Figure
3 shows an improvement from a 55
percent error to a 27 percent error or a
factor of about two. As shown in Figure
4, the improvement in compile and test
defects is most dramatic. From PSP0 to
PSP3, the engineers’ compile and test
defects dropped from 110 defects per
1,000 lines of code (KLOC) to 20 de-
fects per KLOC, or over five times.
Figure 5 shows that even with their
greatly improved planning and quality
performance, the engineers’ lines of code
productivity was more or less constant.

Perhaps the most impressive PSP
change is in the way the engineers spend
their time. With Program 1, as shown in
Figure 6, this group of nearly 300 engi-

Figure 4. Quality results.

neers spent on average less time design-
ing their programs than they did on any
other task. They even spent more time
compiling than designing. At the end of
the course, they spent more time design-
ing than in any other technical activity.
We have been trying to get software
engineers to do this for years. Until they
can experience the benefits of more
thorough designs, they will likely con-
tinue to concentrate on coding, compil-
ing, and testing.

Industrial Results with the PSP
A growing number of organizations are
using the PSP, such as Baan, Boeing,
Motorola, and Teradyne. Data from
some early users clearly demonstrate the
benefits of PSP training [4]. Figure 7
shows data from a team at Advanced
Information Services (AIS) in Peoria, Ill.
They were PSP trained in the middle of
their project. The three bars on the left
of the chart show the engineers’ time
estimates for the weeks it would take
them to develop the first three compo-

Figure 5. Productivity results.

Figure 6. Effort distribution results.

Software Engineering Technology



CROSSTALK The Journal of Defense Software Engineering 15March 1998

nents. For Component 1, for example,
the original estimate was four weeks, but
the job took 20 weeks. Their average
estimating error was 394 percent. After
PSP training, these same engineers com-
pleted the remaining six components. As
shown on the right, their average esti-
mating error was -10.6 percent. The
original estimate for Component 8, for
example, was 14 weeks and the work was
completed in 14 weeks.

Table 1 shows acceptance test data
on products from one group of AIS
engineers. Before PSP training, they had
a substantial number of acceptance test
defects and their products were uni-
formly late. After PSP training, the next
product was nearly on schedule, and it
had only one acceptance test defect.
Table 2 shows the savings in system
testing time for nine PSP projects. At the
top of the chart, system test time is
shown for several products that were
completed before PSP training. At the
bottom, system test time is shown for
products the same AIS engineers com-
pleted after PSP training. Note that A1
and A2 are two parts of the same prod-
uct, so testing for them was done to-
gether in one and one-half months.

Introducing the PSP
Although the PSP can be introduced
quickly, it must also be done properly.
First, the engineers need to be trained by
a qualified PSP instructor. The SEI
trains and authorizes PSP instructors
and provides limited on-site PSP train-
ing. There is also a growing number of
SEI-trained PSP instructors who offer
commercial PSP training (see http://
www.sei.cmu.edu).

The second important step in PSP
introduction is to train in groups or
teams. When organizations ask for vol-
unteers for PSP training, they get a
sparse sprinkling of PSP skills that will

Figure  7. Schedule estimating error.

process. We have found this to be a
problem even at higher CMM levels.
These are the reasons we are developing
the Team Software Process (TSP).

Part III of this article, which de-
scribes what the TSP is and how it helps
teams to work more effectively, will
appear in the April 1998 issue of
CROSSTALK. Although the TSP is still in
development, early industrial experience
demonstrates that it can substantially
improve the performance of integrated
product teams. u

About the Author
Watts S. Humphrey is a
fellow at the SEI of
Carnegie Mellon Uni-
versity, which he joined
in 1986. At the SEI, he
established the Process
Program, led initial

development of the CMM, introduced the
concepts of Software Process Assessment
and Software Capability Evaluation, and
most recently, the PSP and TSP. Prior to
joining the SEI, he spent 27 years with
IBM in various technical executive posi-
tions, including management of all IBM
commercial software development and
director of programming quality and
process. He has master’s degrees in physics
from the Illinois Institute of Technology
and in business administration from the
University of Chicago.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Voice: 412-268-6379
E-mail: watts@sei.cmu.edu

References
1. Humphrey, W.S., A Discipline for Soft-

ware Engineering, Addison-Wesley, Read-
ing, Mass., 1995.

2. Hayes, Will, “The Personal Software
Process: An Empirical Study of the
Impact of PSP on Individual Engineers,”
CMU/SEI-97-TR-001.

3. Humphrey, W.S., “Using a Defined and
Measured Personal Software Process,”
IEEE Software, May 1996.

4. Ferguson, Pat, Watts S. Humphrey,
Soheil Khajenoori, Susan Macke, and
Annette Matvya, “Introducing the Per-
sonal Software Process: Three Industry
Case Studies,” IEEE Computer, Vol. 30,
No. 5, May 1997, pp. 24-31.

System test time before PSP training
Project Size Test Time

A1 15,800 LOC 1.5 months
C 19 requirements 3 test cycles
D 30 requirements 2 months
H 30 requirements 2 months

System test time after PSP training
Project Size Test Time

A2 11,700 LOC 1.5 months
B 24 requirements 5 days
E 2,300 LOC 2 days
F 1,400 LOC 4 days
G 6,200 LOC 4 days
I 13,300 LOC 2 days

Table 2. System test time savings.

Table 1. Acceptance test improvement.

generally have no impact on the perfor-
mance of any project.

Third, effective PSP introduction
requires strong management support.
This, in turn, requires that management
understand the PSP, know how to sup-
port their workers once they are trained,
and regularly monitor their perfor-
mance. Without proper management
attention, many engineers gradually slip
back into their old habits. The problem
is that software engineers, like most
professionals, find it difficult to consis-
tently do disciplined work when nobody
notices or cares. Software engineers need
regular coaching and support to sustain
high levels of personal performance.

The final issue is that even when a
team of engineers are all PSP trained and
properly supported, they still have to
figure out how to combine their per-
sonal processes into an overall team

Not Using Months Acceptance
PSP KLOC Late Test Defects
1 24.6 9 N/A
2 20.8 4 168
3 19.9 3 21
4 13.4 8+ 53
5 4.5 8+ 25

Using PSP
1 22.9 1 1

Three Dimensions of Process Improvement: Part II: The Personal Process


